Fusion of Topology Preserving Neural Networks
نویسندگان
چکیده
In this paper ensembles of self organizing NNs through fusion are introduced. In these ensembles not the output signals of the base learners are combined, but their architectures are properly merged. Merging algorithms for fusion and boosting-fusion-based ensembles of SOMs, GSOMs and NG networks are presented and positively evaluated on benchmarks from the UCI database.
منابع مشابه
Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملA Topology Preserving Neural Network for Nonstationary Distributions
We propose a learning algorithm for selforganizing neural networks to form a topology preserving map from an input manifold whose topology may dynamically change. Experimental results show that the network using the proposed algorithm can rapidly adjust itself to represent the topology of nonstationary input distributions. key words: competitive Hebbian learning rule, law of the jungle mechanis...
متن کاملAn High-Order Graph Generating Neural Network
A large class of neural network models have their units organized in a lattice with fixed topology or generate their topology during the learning process (usually unsupervised). These network models can be used as neighborhood preserving map and some of them generate a perfect topology preserving map of the input manifold using competitive Hebbian rule. But such a structure is difficult to mana...
متن کاملPerformance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks
Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...
متن کاملPerformance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks
Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...
متن کامل